Usage Guide
This guide provides detailed instructions on how to install, configure, and use the CWCloud MCP Server.
Prerequisitesβ
- Go 1.23+ - Download Go
- CWCloud Account - Sign up for access
- API Keys - Generate your access and secret keys from the CWCloud credentials page
Installationβ
Option 1: Clone and Buildβ
# Clone the repository
git clone https://github.com/cwloudtech/cwcloud-mcp.git
cd cwcloud-mcp
# Build the server
go build -o cwcloud-mcp ./cmd/server
# Make it executable
chmod +x cwcloud-mcp
Option 2: Direct Installationβ
# Install directly from source
go install github.com/cwloudtech/cwcloud-mcp/cmd/server@latest
Configurationβ
Environment Setupβ
Create a .env
file in the project root:
# Copy the example configuration
cp .env.example .env
Edit .env
with your CWCloud credentials:
# CWCloud API Configuration
COMWORK_API_URL=https://api.cwcloud.tech
COMWORK_ACCESS_KEY=your_access_key_here
COMWORK_SECRET_KEY=your_secret_key_here
# Server Configuration (optional)
SERVER_PORT=8080
LOG_LEVEL=info
Getting Your API Keysβ
- Log in to your CWCloud Dashboard
- Navigate to Credentials β API Keys
- Generate a new API key pair
- Copy the Access Key and Secret Key to your
.env
file
Quick Startβ
Github Copilot Integration Guide (Recommended)β
The fastest way to get started with CWCloud MCP Server and GitHub Copilot:
# Clone and navigate to the project
git clone https://github.com/cwloudtech/cwcloud-mcp.git
cd cwcloud-mcp
# Run the automated setup
./setup-github-copilot.sh
This will:
- Build the server
- Configure your CWCloud API credentials
- Set up VS Code MCP integration
- Test the connection
See Github Copilot Integration Guide for detailed setup guide
Manual Testingβ
# Run interactive tests with AI functionality
./test-interactive.sh
Connect with MCP Clientsβ
GitHub Copilotβ
After running ./setup-github-copilot.sh
, restart VS Code and use:
#generate_ai_prompt
- Generate AI responses#list_conversations
- List conversation history#list_adapters
- List available AI adapters
Docker Usageβ
Build Docker Imageβ
# Build the Docker image
docker build -t cwcloud-mcp .
Run with Environment Variablesβ
# Method 1: Using individual environment variables
docker run -i --rm \
-e COMWORK_API_URL=https://api.cwcloud.tech \
-e COMWORK_ACCESS_KEY=your_access_key \
-e COMWORK_SECRET_KEY=your_secret_key \
-e LOG_LEVEL=info \
cwcloud-mcp
# Method 2: Using environment file
docker run -i --rm --env-file .env.docker cwcloud-mcp
Test Docker Containerβ
# Test MCP protocol (basic functionality)
echo '{"jsonrpc": "2.0", "id": 1, "method": "initialize", "params": {"protocolVersion": "2025-06-18", "capabilities": {"tools": {}}, "clientInfo": {"name": "test", "version": "1.0.0"}}}' | \
docker run -i --rm --env-file .env.docker cwcloud-mcp
# Test AI generation
echo '{"jsonrpc": "2.0", "id": 2, "method": "tools/call", "params": {"name": "generate_ai_prompt", "arguments": {"adapter": "gpt4o", "message": "Hello world!"}}}' | \
docker run -i --rm --env-file .env.docker cwcloud-mcp
# Test conversation listing
echo '{"jsonrpc": "2.0", "id": 3, "method": "tools/call", "params": {"name": "list_conversations", "arguments": {}}}' | \
docker run -i --rm --env-file .env.docker cwcloud-mcp
Available Toolsβ
#generate_ai_prompt
: Generate AI responses using various models (GPT-4, Claude, Gemini).#list_conversations
: List and manage your AI conversation history.#list_adapters
: List all available AI adapters and their current status.
Supported AI Models:
gpt4o
,gpt4o-mini
- OpenAI GPT-4 variantsclaude3sonnet
,claude3haiku
- Anthropic Claude 3gemini
,gemini-pro
- Google Geminiopenmistral
- OpenMistral
For detailed usage examples, see Github Copilot Integration Guide